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Laguerre scheme: Another member for propagating the time-dependent Schainger equation
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A global propagation scheme for the time-dependent Sitthger equation is proposed on the basis of the

generating function of the Hermite polynomial for expansion of the evolution opeeatsf. Theoretical
analysis and numerical tests have shown that the present scheme is an equivalent to the Chebyshev scheme
with two extra advantage$S1063-651X99)02202-3

PACS numbgs): 02.70.Hm, 02.60.Lj, 03.65.Ge

A tl_me-depeno_lent computational method for solving the bnr1=2(NH) = 2n¢p,_1,
Schalinger equation has already become a powerful tool for . ©6)
both the scattering and eigenvalue problems. Many excellent do=(0), &1=2NHY(0).

review articles are available for evaluating different time Moreover, if imaginary time propagation is needed, the same
propagation schemes and their applicatiphis In this paper  procedure as the above can be used to obtain the correspond-
we present a time propagation approach which can be clagg expansion. The result is

sified as equivalent to the Chebyshev scheme proposed by Y(t)=e “‘w<0)

Tal-Ezer and Kosloff2]. The main idea is extremely simple,

and uses just the generating function of the Hermite.polyno- :e—(t/2)\)2e—(—it/2)\)2+2(—i)\l:1)(—(it/2)\))¢(0)

mial for the expansion of the exponential operagort', . _

where the Ha_milto_nian:l of the system under §t_udy is as- =e‘(”2")22 (—D)" (L)n @)
sumed to be time independent: the same condition as that of n=o n! |2\

the Chebyshev scheme. Using Gray’s proced8tethe Her-

mite polynomial in the expansion is replaced by the Laguerrdvhere ®, =Hy(~iAF)y(0), and therecursive algorithm
for @, stlll in terms of the recurrence relation for the Her-

polynomial.
The time-dependent Sctimger equation with the above Mite polynomial, now becomes
H and its formal solution are given by Dy =2(—iNH)D,—2nD 4,
|_l//( )_H'lf(t) ,T/,(t):e*”:'t(/,(o)’ (1) Go=¢(0), P;=2(—iNH)¥(0). 8

It is obvious that expansiofY) for the imaginary time propa-
ation has the same rate of convergence as the real time
ropagatior{ Eq. (5)] because the corresponding coefficients

and norm of the Hermite polynomial of the operator occur-

ring in Egs.(5) and(7) are the same.

A few remarks can be drawn from a comparison of the
present expansion with the Chebyshev scheme: First, the
) o present scheme is a global propagator which allows for large
Next, rearrange the exponential operatot™" into the form  time steps while propagating the wave function. Next, there

e Ht= g~ (U207 g = (~iIt/2) 2+ 2NH (= (it/20), (3) is no need to scale the Hamiltonian into a special norm, and

here an arbitrary parameter was introduced for conve- hence no risk of numerical instability due to the inappropri-

nience of later use. By comparing E(@) with Eq. (2) by &€ estimate fodE=Eq—Enin, WhereEp,, and Ey, are
settings= —it/2x andx=\A. we immediately obtain the the estimated maximal and minimal energies on the grids,
gs= L y respectively. Finally, the expansion coefficients relevant to

where(0) is an arbitrary initial wave function. Throughout
the paper the atomic unit is used. Recall that the Hermit
polynomial is related to its generating function [y

e—52+25X 2 —H ( ) (2)

n=0 n!
where H,(x) denotes the Hermite polynomial of order

Hermite expansion foe;i“‘, timet are extremely simple monomials, multiplied by a com-
At o (t20)2 (—i)" mon Gaussian function of timg which are easy to operate
e =e HEO n |2xn n()‘H) (4) both analytically and numerically. For example, in many ap-

) plications we need to calculate the one-time correlation func-
and thus the formal solutlgn of E(ﬂ) can be formulated as tion C(t)={(0)|y(t)) and its windowed Fourier transform
W)= P2 (—l)n(L)n ©) Sw(t)C(t)e 'Eldt for bound-state problems, and the two-
=0 n! {2x) "™ time correlation functionl (t,x)=[{é(t— 7,X)* ¢(7,x)d7
for scattering problems. These two integrals can be readily
computed through the present propagation scheme. The fol-
Iowing formula is given for the two-time correlation func-

where ¢>n=Hn()\I:|)¢(O). It is easily shown that whem

>(et/2)\)—1 the term (2d!)(t/2\)" will behave like
—nInl(n+12M] - \which means that the expansié#) con- tion:

verges exponentlally Likewise, the recurrence relation for

the Hermite polynomia[4] can produce an recursive algo- 1(t,X)= 2 E

rithm for expansion(5), i.e., = nml

)m n+m

Anm(DFL0* LX) (9)
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where TABLE |. Potential parameter&@.u. throughoyt
t n+m+1 ) -
Anm(H)=2) ( K) e~ 2(tan) Harmonic Morse
+1 3 1w De(l1—e #%)2
XJ e—z(t/4)‘)252(1+s)”(l—s)mds, u=918.491 ©=918.491
! (10) B=1.02764
fFrO0=HyAH)$(0x),  F1(x)=Hm(AH)¢(0x), De=0.17444
w=wg wo=p\2Delu
in which the integral inA,, ,,(t) can be easily calculated by
the Legendre or Chebyshev quadrature. Similarly, the ex- "
pression for the one-time correlation function can be ob- i (22 (-n° r ZnH 0
tained with less effort than the above. In the ChebyshevCOS(T J(t)=e =0 (2n)! (| 2n 2n(MH) 4 (1)
scheme,A,, n(t) involves an infinite series of the Bessel
functions of integer order. - (r.0)
In actual implementation expansiof§ or (7) are trun- =n§O Cn(m) (1),
cated in terms of a given accuracy which may be the accu- (14)
racy limit of the computer. In general, the total number of w n ont1
expansion terms will be slightly larger than the convergence sin(7H) ¢, (t) :ef(t/2)\)22 (=1 L)
criterion (€t/2\)— 1. It is because of the truncation that the ' n=o0 (2n+1)I | 2\
present scheme also becomes nonunitary, similar to the ~
Chebyshev scheme; thus the deviation from unitarity can be XHans1(NH) (1)
used as an accuracy check for numerical calculations. In the 0
following numerical test for the present scheme, Gray’s pro- _ 2 c (T)¢(r,s)(t)
cedure[3] has been adopted to replace the exponential op- i=o2n+1 " " '

eratore” "Mt with cos@t) and sinfit). This method allows a W20 N (o 1] an A(ro)
separation of the propagation into real and imaginary parts o‘?’hefizcnz(f)z_ © [2 /(2(:‘15) L ](AT/ZI)Z) o f“ (1)
=L, "“(NHY) ¢ (1), and ¢ 7 (t)=NHL;(NH) (1),

the wave function/(t), i.e., - ] /
which satisfy the recurrence relatiofts]

Y (t+7)= — g (t—7)+ 2 cog 7H) i (7), (N+1) 9 (H)=(2n+1/2= XA (1)
o () —(n-12) 450,
lﬂ'l(t‘l‘ T)_+lﬂ'|(t_7')_2 Slr(TH)‘ﬂr(T), (,'bg'c)(t):l/fr(t), d)g-r,c)(t):1/2¢g,(3)(t)_)\2ﬂ2l7//r(t)'
with the initial steps . - (19
¢n TO=NHSTIO+ B30, B (O=NHY (D).
(1) =cog 7H) ¢, (0) +sin( 7H) ;(0), Note that the recurrence relation f¢t§{’s)(t) does not need
extra evaluation of Hamiltonian operation mﬁ"’c)(t), and
(1) =cog 7H) ¢;(0) —sin( 7H) 4, (0), (12)  can just take the intermediate result from the recurrence re-

lation for ¢§1"°)(t) because the Hamiltonian operation is
squared in the recurrence relation f@f°(t). Since the
Laguerre polynomials have been used in expanéldh the
. X . present propagation scheme is called lthguerre scheme
tively. Th? advantage of Gray's procedure is that the opera- Numerical tests in this paper have been carried out on the
;or pt‘.”‘”s mtEq.Ell) ‘ft only ont_ the :eal ﬁatrr: of t_?elwave one-dimensional harmonic and Morse oscillators. The spatial
unction fﬂf( ) a each propagation step. € initial Wavefderivative in the Hamiltonian is evaluated using fast Fourier
function is real, this procedure can reduce computational efansform. and hence there is no need to go beyond more
fort by.afactc.)r.of 2. . . . than one dimension to test the present scheme because,
By first _spllttlng Eq.(4) into real and Imaginary parts, and within the Fourier spectral framework, the present scheme
furlther u_S||ngsthe relations between Hermite and I“leguerr(?‘lumericalIy shares the same advantages and disadvantages
polynomials(5], with the Chebyshev scheme. To make a parallel comparison,
Gray'’s procedur¢Eqgs.(11) and(12)] has also been adopted

where 7 is a time propagation steg, and ¢; represent the
real and imaginary parts of the wave functigh respec-

Hon(X)=(—1)"22"nlL Y4x?), for the Chebyshev scheme. Following Tal-Ezer and Kosloff
(13)  [2], the eigenfunctions of the harmonic and Morse oscillators
Hont1(X)=(—1)"22" InixLY2(x?), are propagated, and the results are compared to their corre-

sponding analytical solutions of the ScHinger equation.
. Errors can be estimated or measured by the norm of the
we obtain the following results for cosf)#(t) and  propagated wave functions and the deviations of the propa-
sin(mH) y(t): gated wave functions from their exact ones, i.e.,
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TABLE Il. Comparison of numerical results for the harmonic oscillator between the Laguerre and Cheby-
shev schemes. For each time stefhe total propagation time=10 000r. The paramete$=9 is used.

Laguerre Chebyshev
n T N Norm Error N Norm Error
12 12
5 8 1.0---0 2.3x10~%0 10 1.0---0 2.4x10~20
13 12
o ——
15 15 1.0---0 1.7x1071®8 15 1.0---0 3.7x10~19
13 11
N e
0 25 21 1.0---0 3.3x1071° 19 1.0.--0 1.3x1019
12 11
M=32 40 31 1.0---0 3.1x10°1° 25 1.0---0 3.2x1071°
11 11
—— ——
Ax=0.107 5 9 1.0---0 2.1x10-18 9 1.0---0 2.1x10°16

11 11
e v, ——
15 16 1.0---0 2.6x10-16 15 1.0---0 2.6x10716

11 11
— N Cunthas
5 25 23 1.0---0 2.7x10°16 19 1.0.-.0 6.1x10"16

11 11
o — ——
40 34 1.0---0 5.0x10716 23 1.0---0 5.6x10"18

13 11
— e

5 11 1.0---0 2.9%x10~22 12 1.0---0 1.8x10720
13 12
—— o m—
15 23 1.0.-.0 2.6x10~% 21 1.0---0 2.8x10"18
12 11
0 25 38 1.0---0 2.2x10~% 28 1.0---0 1.1x10-19
11 11
o
M=64 0 66 100  16x1072 38 10---0  6.8x10°%
13 13
o — ——
Ax=0.07 5 11 1.0---0 8.5x10725 12 1.0---0 1.4x10~22
12 12 .
o — ——
15 22 1.0---0 1.4x10-22 21 1.0---0 3.4x10~%
12 ,—I/L
——
5 25 38 1.0---0 1.5x10-2t 28 1.0---0 8.8x10~20
11 11

—— ——
40 67 1.0--:0 5.5x10~21 38 1.0.-.0 2.1x10~20

) ) under study. For the real time propagation, the empirical
f dX| ead x,1)[*=1, fd)dlv[/anaﬁxrt)_'r//calc(xrt)l : formula A =S/H . has been used in our present calcula-
(16)  tions, in whichH =Tyt Vinax represented on the grid and
where ¢ {x,t) denotes the propagated wave function and>=8—10 depending on the system considered. Unlike the
YanalX,t) the corresponding analytical one whose form isChebyshev scheme, the underestimated or overestimated
¥n(X,t) = ¢ (X,0)e 'Ent where E, and ¢,,(x,0) are thenth  Hmax does not cause the numerical instability in the present
energy level and its corresponding eigenfunction of the harscheme.
monic or Morse oscillator. In Table | are listed the potential parameters for the har-
All details of numerical computation are very simple in monic and Morse oscillators used in this paper. In Tables Il
this paper. The integrations in E(L6) are approximately and lll, Ax andM denote the grid spacing and the number of
computed simply by the direct summation form, i.e., for anyFourier grid points, respectively. The parametdndicates
integrable functiong(x), fgdx g(x)wEi"":og(xi)Axi which  the propagation time step and, the total propagation tilme
is the poorest numerical quadrature, but it is enough for ouil0 000 in the calculations. It is necessary to point out that
present purposésee Table Il and I)L The arbitrary param- the parameteN in Table Il and Il is the highest order of
eter\ introduced in the present propagation scheme can bexpansion determined by the convergence criterion, which is
adjusted to avoid multiplications between large and smalket to bg Ry ;— Ry <10~ *for double precision, whery,
numbers in the computer, and to accelerate the convergencepresents th&lth term in expansior{14). The number of
of expansiong5), (7), and (14) depending on the systems calls to Hamiltonian acting on the wave function il 2t
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TABLE IIl. Comparison of numerical results for the Morse oscillator between the Laguerre and Cheby-
shev schemes. For each time stefe total propagation time=10 000r. The paramete$=9 is used.

Laguerre Chebyshev
n T N Norm Error N Norm Error
12 12
Pty e,
5 12 1.0---0 4.1x10~%4 13 1.0---0 3.1x10"22
12 11
Dt o ——
15 26 1.0--0 5.3x10~22 22 1.0---0 1.4%x10~20
12 11
0 25 42 1.0--0 1.8x10~2 30 1.0--.0 4.3x1071?
12 12
M=64 40 72 1.0---0 1.2x10-%0 41 1.0---0 1.9%x10-20
12 12
Ax=0.075 5 12 1.0---0 6.7x10~%0 13 1.0---0 6.7x10~20
12 13
15 26 1.0---0 8.0x10~20 22 1.0--.0 1.0x10-20
13 12
—— —N—
5 25 43 1.0---0 7.3x10-% 30 1.0--.0 7.3x10-20
11 12
—— e e,
40 72 1.0---0 8.6x10~20 41 1.0---0 9.0x10-20

each propagation step. Two energy levels0 and 5 for  points that do not exist in the Chebyshev scheme. One is the
both oscillators are considered. calculation for the expansion coefficie@},(7). Another is

The numerical tests for these two model systems havéhat the present scheme, in principle, does not need to scale
shown the following: First, the accuracy of the method isthe Hamiltonian. Only for numerical reasons we introduced
very high and the error is almost uniformly distributed overan arbitrary parametex in the expansion in order to reduce
different time steps. Second, compared with the Chebyshethe operation error between large and small numbers in the
scheme, the expansion coefficig®it(7) in Eq. (14) can be computer and to adjust the convergence rate. The empirical
easily and accurately calculated through its recurrence reldermula A =S/H,,,,, with S=8-10, aims at balancing be-
tion Cni1(7)=[2/(2n+1)](7/2\)?C,(7), which is ex- tween the calculations a€,(7) and¢,(t). All these are not
tremely stable numerically. Third, the method is not unitary,strictly restrictive. Therefore, combined with an appropriate
that is, it does not preserve the energy and the norm, bunterpolation scheme for spatial derivatives instead of the
because of its high accuracy, the deviation from the unitarityrourier grid, a potential and promising application of this
can be kept as small up to the convergence criterion duringonscaling property for the Hamiltonian would be the gen-
the propagation. Finally, we have to mention a numericakralization of the present scheme to any shape of spatial re-
drawback of the present scheme. The number of expansiagion and irregularscatteredl grids which are important for
terms needed to converge the sum increases more quickhigh-dimensional problems, which is just the motivation for
than that in the Chebyshev scheme as the propagation tintbe present paper. A recently developed method, reproducing
step becomes large. the kernel Hilbert spacf6], would be a good way of doing

In conclusion, the present scheme can be regarded as #mis. Of course, the Chebyshev scheme could also be ex-
equivalent to the Chebyshev scheme. It shares almost all tHended to this case with our interpolation scheme for spatial
advantages and disadvantages except for the drawback meterivatives, as long as the scaling of the Hamiltonian could
tioned above. However, it also possesses other favorablee correctly done.
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