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Laguerre scheme: Another member for propagating the time-dependent Schro¨dinger equation
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Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009
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A global propagation scheme for the time-dependent Schro¨dinger equation is proposed on the basis of the

generating function of the Hermite polynomial for expansion of the evolution operatore2 iĤ t. Theoretical
analysis and numerical tests have shown that the present scheme is an equivalent to the Chebyshev scheme
with two extra advantages.@S1063-651X~99!02202-3#

PACS number~s!: 02.70.Hm, 02.60.Lj, 03.65.Ge
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A time-dependent computational method for solving t
Schödinger equation has already become a powerful tool
both the scattering and eigenvalue problems. Many exce
review articles are available for evaluating different tim
propagation schemes and their applications@1#. In this paper
we present a time propagation approach which can be c
sified as equivalent to the Chebyshev scheme propose
Tal-Ezer and Kosloff@2#. The main idea is extremely simple
and uses just the generating function of the Hermite poly

mial for the expansion of the exponential operatore2 iĤ t,
where the HamiltonianĤ of the system under study is a
sumed to be time independent: the same condition as th
the Chebyshev scheme. Using Gray’s procedure@3#, the Her-
mite polynomial in the expansion is replaced by the Lague
polynomial.

The time-dependent Scho¨dinger equation with the abov
Ĥ and its formal solution are given by

i
]c~ t !

]t
5Ĥc~ t !, c~ t !5e2 iĤ tc~0!, ~1!

wherec~0! is an arbitrary initial wave function. Throughou
the paper the atomic unit is used. Recall that the Herm
polynomial is related to its generating function by@4#

e2s212sx5 (
n50

`
sn

n!
Hn~x!, ~2!

where Hn(x) denotes the Hermite polynomial of ordern.

Next, rearrange the exponential operatore2 iĤ t into the form

e2 iĤ t5e2~ t/2l!2
e2~2 i t /2l!212lĤ„2~ i t /2l!…; ~3!

here an arbitrary parameterl was introduced for conve
nience of later use. By comparing Eq.~3! with Eq. ~2! by
setting s52 i t /2l and x5lĤ, we immediately obtain the

Hermite expansion fore2 iĤ t,

e2 iĤ t5e2~ t/2l!2

(
n50

`
~2 i !n

n! S t

2l D n

Hn~lĤ !, ~4!

and thus the formal solution of Eq.~1! can be formulated as

c~ t !5e2~ t/2l!2

(
n50

`
~2 i !n

n! S t

2l D n

fn , ~5!

where fn5Hn(lĤ)c(0). It is easily shown that whenn
.(et/2l)21, the term (1/n!)( t/2l)n will behave like
e2n ln@(n11)/e(2l/t)#, which means that the expansion~4! con-
verges exponentially. Likewise, the recurrence relation
the Hermite polynomial@4# can produce an recursive algo
rithm for expansion~5!, i.e.,
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fn1152~lĤ !fn22nfn21 ,
~6!f05c~0!, f152lĤc~0!.

Moreover, if imaginary time propagation is needed, the sa
procedure as the above can be used to obtain the corresp
ing expansion. The result is

C~ t !5e2Ĥtc~0!

5e2~ t/2l!2
e2~2 i t /2l!212~2 ilĤ !„2~ i t /2l!…c~0!

5e2~ t/2l!2

(
n50

`
~2 i !n

n! S t

2l D n

Fn , ~7!

where Fn5Hn(2 ilĤ)c(0), and therecursive algorithm
for Fn , still in terms of the recurrence relation for the He
mite polynomial, now becomes

Fn1152~2 ilĤ !Fn22nFn21 ,

F05c~0!, F152~2 ilĤ !c~0!. ~8!

It is obvious that expansion~7! for the imaginary time propa-
gation has the same rate of convergence as the real
propagation@Eq. ~5!# because the corresponding coefficien
and norm of the Hermite polynomial of the operator occ
ring in Eqs.~5! and ~7! are the same.

A few remarks can be drawn from a comparison of t
present expansion with the Chebyshev scheme: First,
present scheme is a global propagator which allows for la
time steps while propagating the wave function. Next, th
is no need to scale the Hamiltonian into a special norm,
hence no risk of numerical instability due to the inapprop
ate estimate forDE5Emax2Emin , whereEmax and Emin are
the estimated maximal and minimal energies on the gr
respectively. Finally, the expansion coefficients relevant
time t are extremely simple monomials, multiplied by a com
mon Gaussian function of timet, which are easy to operat
both analytically and numerically. For example, in many a
plications we need to calculate the one-time correlation fu
tion C(t)5^c(0)uc(t)& and its windowed Fourier transform
*w(t)C(t)e2 iEtdt for bound-state problems, and the tw
time correlation functionI (t,x)5*0

t f(t2t,x)* c(t,x)dt
for scattering problems. These two integrals can be rea
computed through the present propagation scheme. The
lowing formula is given for the two-time correlation func
tion:

I ~ t,x!5 (
n50

`

(
m50

`
~21!mi n1m

n!m!
An,m~ t ! f n

f~x!* f m
c ~x! ~9!
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where

An,m~ t !52lS t

4l D n1m11

e22~ t/4l!2

3E
21

11

e22~ t/4l!2s2
~11s!n~12s!mds,

~10!
f n

f~x!5Hn~lĤ !f~0,x!, f m
c ~x!5Hm~lĤ !c~0,x!,

in which the integral inAn,m(t) can be easily calculated b
the Legendre or Chebyshev quadrature. Similarly, the
pression for the one-time correlation function can be
tained with less effort than the above. In the Chebysh
scheme,An,m(t) involves an infinite series of the Bess
functions of integer order.

In actual implementation expansions~5! or ~7! are trun-
cated in terms of a given accuracy which may be the ac
racy limit of the computer. In general, the total number
expansion terms will be slightly larger than the converge
criterion (et/2l)21. It is because of the truncation that th
present scheme also becomes nonunitary, similar to
Chebyshev scheme; thus the deviation from unitarity can
used as an accuracy check for numerical calculations. In
following numerical test for the present scheme, Gray’s p
cedure@3# has been adopted to replace the exponential

eratore2 iĤ t with cos(Ĥt) and sin(Ĥt). This method allows a
separation of the propagation into real and imaginary part
the wave functionc(t), i.e.,

c r~ t1t!52c r~ t2t!12 cos~tĤ !c r~t!,
~11!

c i~ t1t!51c i~ t2t!22 sin~tĤ !c r~t!,

with the initial steps

c r~t!5cos~tĤ !c r~0!1sin~tĤ !c i~0!,

c i~r !5cos~tĤ !c i~0!2sin~tĤ !c r~0!, ~12!

wheret is a time propagation step.c r andc i represent the
real and imaginary parts of the wave functionc, respec-
tively. The advantage of Gray’s procedure is that the ope
tor parts in Eq.~11! act only on the real part of the wav
function c r(t) at each propagation step. If the initial wav
function is real, this procedure can reduce computationa
fort by a factor of 2.

By first splitting Eq.~4! into real and imaginary parts, an
further using the relations between Hermite and Lague
polynomials@5#,

H2n~x!5~21!n22nn!Ln
21/2~x2!,

~13!

H2n11~x!5~21!n22n11n!xLn
1/2~x2!,

we obtain the following results for cos(tĤ)cr(t) and
sin(tĤ)cr(t):
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cos~tĤ !c r~ t !5e2~ t/2l!2

(
n50

`
~21!n

~2n!! S t

2l D 2n

H2n~lĤ !c r~ t !

5 (
n50

`

Cn~t!fn
~r ,c!~ t !,

~14!

sin~tĤ !c r~ t !5e2~ t/2l!2

(
n50

`
~21!n

~2n11!! S t

2l D 2n11

3H2n11~lĤ !c r~ t !

5 (
n50

`
2

2n11
Cn~t!fn

~r ,s!~ t !,

where Cn(t)5e2(t/2l)2
@2n/(2n21)!! #(t/2l)2n, fn

(r ,c)(t)

5Ln
21/2(l2Ĥ2)c r(t), and fn

(r ,s)(t)5lĤLn
1/2(l2Ĥ2)c r(t),

which satisfy the recurrence relations@5#

~n11!fn11
~r ,c!~ t !5~2n11/22l2Ĥ2!fn

~r ,c!~ t !

2~n21/2!fn21
~r ,c!~ t !,

f0
~r ,c!~ t !5c r~ t !, f1

~r ,c!~ t !51/2f0
~r ,c!~ t !2l2Ĥ2c r~ t !,

~15!

fn
~r ,s!~ t !5lĤfn

~r ,c!~ t !1fn21
~r ,s!~ t !, f0

~r ,s!~ t !5lĤc r~ t !.

Note that the recurrence relation forfn
(r ,s)(t) does not need

extra evaluation of Hamiltonian operation onfn
(r ,c)(t), and

can just take the intermediate result from the recurrence
lation for fn

(r ,c)(t) because the Hamiltonian operation
squared in the recurrence relation forfn

(r ,c)(t). Since the
Laguerre polynomials have been used in expansion~14!, the
present propagation scheme is called theLaguerre scheme.

Numerical tests in this paper have been carried out on
one-dimensional harmonic and Morse oscillators. The spa
derivative in the Hamiltonian is evaluated using fast Four
transform, and hence there is no need to go beyond m
than one dimension to test the present scheme beca
within the Fourier spectral framework, the present sche
numerically shares the same advantages and disadvan
with the Chebyshev scheme. To make a parallel compari
Gray’s procedure@Eqs.~11! and~12!# has also been adopte
for the Chebyshev scheme. Following Tal-Ezer and Kosl
@2#, the eigenfunctions of the harmonic and Morse oscillat
are propagated, and the results are compared to their c
sponding analytical solutions of the Schro¨dinger equation.
Errors can be estimated or measured by the norm of
propagated wave functions and the deviations of the pro
gated wave functions from their exact ones, i.e.,

TABLE I. Potential parameters~a.u. throughout!.

Harmonic Morse

1
2 mv2x2 De(12e2bx)2

m5918.491 m5918.491

b51.02764

De50.17444

v5v0 v05bA2De/m
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TABLE II. Comparison of numerical results for the harmonic oscillator between the Laguerre and C
shev schemes. For each time stept the total propagation timet510 000t. The parameterS59 is used.
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E dxuccalc~x,t !u251, Edxucanal~x,t !2ccalc~x,t !u2,

~16!

whereccalc(x,t) denotes the propagated wave function a
canal(x,t) the corresponding analytical one whose form
cn(x,t)5cn(x,0)e2 iEnt whereEn and cn(x,0) are thenth
energy level and its corresponding eigenfunction of the h
monic or Morse oscillator.

All details of numerical computation are very simple
this paper. The integrations in Eq.~16! are approximately
computed simply by the direct summation form, i.e., for a
integrable functiong(x), *a

bdx g(x)'( i 50
M g(xi)Dxi which

is the poorest numerical quadrature, but it is enough for
present purpose~see Table II and III!. The arbitrary param-
eter l introduced in the present propagation scheme can
adjusted to avoid multiplications between large and sm
numbers in the computer, and to accelerate the converg
of expansions~5!, ~7!, and ~14! depending on the system
d

r-

r

be
ll
ce

under study. For the real time propagation, the empiri
formula l5S/Hmax has been used in our present calcu
tions, in whichHmax5Tmax1Vmax represented on the grid an
S58 – 10 depending on the system considered. Unlike
Chebyshev scheme, the underestimated or overestim
Hmax does not cause the numerical instability in the pres
scheme.

In Table I are listed the potential parameters for the h
monic and Morse oscillators used in this paper. In Table
and III, Dx andM denote the grid spacing and the number
Fourier grid points, respectively. The parametert indicates
the propagation time step and, the total propagation timet is
10 000t in the calculations. It is necessary to point out th
the parameterN in Table II and III is the highest order o
expansion determined by the convergence criterion, whic
set to beuRN112RNu,10214 for double precision, whereRN
represents theNth term in expansion~14!. The number of
calls to Hamiltonian acting on the wave function is 2N at
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TABLE III. Comparison of numerical results for the Morse oscillator between the Laguerre and Ch
shev schemes. For each time stept the total propagation timet510 000t. The parameterS59 is used.
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each propagation step. Two energy levelsn50 and 5 for
both oscillators are considered.

The numerical tests for these two model systems h
shown the following: First, the accuracy of the method
very high and the error is almost uniformly distributed ov
different time steps. Second, compared with the Chebys
scheme, the expansion coefficientCn(t) in Eq. ~14! can be
easily and accurately calculated through its recurrence r
tion Cn11(t)5@2/(2n11)#(t/2l)2Cn(t), which is ex-
tremely stable numerically. Third, the method is not unita
that is, it does not preserve the energy and the norm,
because of its high accuracy, the deviation from the unita
can be kept as small up to the convergence criterion du
the propagation. Finally, we have to mention a numeri
drawback of the present scheme. The number of expan
terms needed to converge the sum increases more qu
than that in the Chebyshev scheme as the propagation
step becomes large.

In conclusion, the present scheme can be regarded a
equivalent to the Chebyshev scheme. It shares almost al
advantages and disadvantages except for the drawback
tioned above. However, it also possesses other favor
.
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points that do not exist in the Chebyshev scheme. One is
calculation for the expansion coefficientCn(t). Another is
that the present scheme, in principle, does not need to s
the Hamiltonian. Only for numerical reasons we introduc
an arbitrary parameterl in the expansion in order to reduc
the operation error between large and small numbers in
computer and to adjust the convergence rate. The empi
formula l5S/Hmax, with S58 – 10, aims at balancing be
tween the calculations ofCn(t) andfn(t). All these are not
strictly restrictive. Therefore, combined with an appropria
interpolation scheme for spatial derivatives instead of
Fourier grid, a potential and promising application of th
nonscaling property for the Hamiltonian would be the ge
eralization of the present scheme to any shape of spatia
gion and irregular~scattered! grids which are important for
high-dimensional problems, which is just the motivation f
the present paper. A recently developed method, reprodu
the kernel Hilbert space@6#, would be a good way of doing
this. Of course, the Chebyshev scheme could also be
tended to this case with our interpolation scheme for spa
derivatives, as long as the scaling of the Hamiltonian co
be correctly done.
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